Workshop Molecular Photoreactivity on Metal-Oxide Surfaces from First-Principles

Madrid 4th – 5th December 2009

Reactivity and Chemical Reactions of Faceted TiO2 Nanoparticles

James P. Lewis



West Virginia University, Department of Physics, Morgantown, WV 26506-6315, USA



email: james.lewis@mail.wvu.edu

Abstract 

Although anatase is a less stable crystallographic phase than rutile in bulk titanium dioxide materials, it has received considerable attention in photoactive materials related applications due to increased high reactivity in the anatase polymorph (1, 2). More interestingly, it is reported that anatase, instead of rutile, becomes the preferable stable phase for TiO2 for particle sizes less than 14nm (3, 4). Therefore, an important step in achieving a full understanding of anatase nanoparticles’ photoactive functions with regards to their surface’ characteristics is to examine and determine specific active sites that are available for probing molecules surface adsorption and dissociation. 

In previous reported work, the (101) surface is found to be the majority surface dominating the exposed shape on nanosized anatase crystallites (3, 4, 7-9). However, the minority surfaces (001) are the most reactive for photocatalytic reactions on anatase surfaces (10-16). In this work, we attempt to understand the relationship between the unique electronic properties and surfaces of anatase nanoparticles by investigating faceted nanoparticles which have both the (001) and (101) surfaces in different percentages. A critical question is where active sites are located in relation to this intersection. In this work, we aim to address this question by theoretically investigating specially constructed anatase nanoparticles with co-existing (101) and (001) surfaces and predict where the active sites and potential adsorption and dissociation will most likely occur. 
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There are obviously structural changes appearing in the surface areas in the nanoparticles; the most noted structural changes occur at the edged Ti atoms which are connected between (001) facets and (101) facets. One nanoparticle (182 atoms) is shown in Fig. 1 (a) as an example which demonstrates the exact locations of edged Ti atoms in the initial structures before optimization. As a result of optimization, the edged Ti atoms move outward which results in extended Ti-O bonds; these edged Ti atoms are lower coordinated in the optimized structures. The primary result is that the edged Ti atoms connected between the (001) and the (101) surfaces exhibit the most significant structural changes; the original four-coordinated Ti atoms become three-coordinated which make them very reactive sites exposed at these surfaces. 

A further analysis of the electronic structures provide a complete understanding of the relationship between these low-coordinated edged Ti atoms and the reactive properties. The density of states for the 182 atom nanoparticle system is shown in Fig. 1(b). The energy gap of our model nanoparticles are approximately 3.5 eV which are larger than bulk’s band gap. A feature in the PDOS plots indicates the existence of mid-gap frontier orbitals. These small peak states occur near the Fermi energy, which is approximately 1 eV beneath the conduction band edge, and are solely due to Ti atoms. More importantly, these frontier orbitals are due to edge Ti atoms specifically located at the interface between the (001) and the (101) facets; the edged Ti atoms are low-coordinated junctures between (001) and (101) surfaces. 

We also find that these frontier orbital states are very localized; the number of accessible atoms, as defined by W in Ref. (19), is no more than 10 atoms. These highly localized edged Ti atoms thus are strong adsorption sites for water or other molecules. And although it is accepted that (001) facets are more active for both adsorption and dissociation and (101) facets are less so, we find that the most reactive sites for nanoparticles are actually at the interface between these two facets on these unsaturated Ti sites. These sites therefore provide unique surface structural properties in nanoparticles where a variable of facets exist. 
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Figure 1. An example of a faceted anatase nanoparticle; the edged Ti atoms are labeled yellow which are 3- or 4-coordinated Ti atoms connected between (001) and (101) surfaces. The PDOS (projected density of states) is also displayed. The red plots represent states from Ti atoms and black plots from O atoms in nanoparticles. The peak mid-gap corresponds to the lower-coordinated Ti corner atoms. 
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